414 research outputs found

    Slice sampling covariance hyperparameters of latent Gaussian models

    Get PDF
    The Gaussian process (GP) is a popular way to specify dependencies between random variables in a probabilistic model. In the Bayesian framework the covariance structure can be specified using unknown hyperparameters. Integrating over these hyperparameters considers different possible explanations for the data when making predictions. This integration is often performed using Markov chain Monte Carlo (MCMC) sampling. However, with non-Gaussian observations standard hyperparameter sampling approaches require careful tuning and may converge slowly. In this paper we present a slice sampling approach that requires little tuning while mixing well in both strong- and weak-data regimes.Comment: 9 pages, 4 figures, 4 algorithms. Minor corrections to previous version. This version to appear in Advances in Neural Information Processing Systems (NIPS) 23, 201

    Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes

    Get PDF
    Probabilistic matrix factorization (PMF) is a powerful method for modeling data associated with pairwise relationships, finding use in collaborative filtering, computational biology, and document analysis, among other areas. In many domains, there is additional information that can assist in prediction. For example, when modeling movie ratings, we might know when the rating occurred, where the user lives, or what actors appear in the movie. It is difficult, however, to incorporate this side information into the PMF model. We propose a framework for incorporating side information by coupling together multiple PMF problems via Gaussian process priors. We replace scalar latent features with functions that vary over the space of side information. The GP priors on these functions require them to vary smoothly and share information. We successfully use this new method to predict the scores of professional basketball games, where side information about the venue and date of the game are relevant for the outcome.Comment: 18 pages, 4 figures, Submitted to UAI 201

    Learning the Structure of Deep Sparse Graphical Models

    Full text link
    Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.Comment: 20 pages, 6 figures, AISTATS 2010, Revise

    Elliptical slice sampling

    Get PDF
    Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Monte Carlo algorithm for performing inference in models with multivariate Gaussian priors. Its key properties are: 1) it has simple, generic code applicable to many models, 2) it has no free parameters, 3) it works well for a variety of Gaussian process based models. These properties make our method ideal for use while model building, removing the need to spend time deriving and tuning updates for more complex algorithms.Comment: 8 pages, 6 figures, appearing in AISTATS 2010 (JMLR: W&CP volume 6). Differences from first submission: some minor edits in response to feedback

    Gaussian Process Kernels for Pattern Discovery and Extrapolation

    Get PDF
    Gaussian processes are rich distributions over functions, which provide a Bayesian nonparametric approach to smoothing and interpolation. We introduce simple closed form kernels that can be used with Gaussian processes to discover patterns and enable extrapolation. These kernels are derived by modeling a spectral density – the Fourier transform of a kernel – with a Gaussian mixture. The proposed kernels support a broad class of stationary covariances, but Gaussian process inference remains simple and analytic. We demonstrate the proposed kernels by discovering patterns and performing long range extrapolation on synthetic examples, as well as atmospheric CO2 trends and airline passenger data. We also show that it is possible to reconstruct several popular standard covariances within our framework.Engineering and Applied Science
    • …
    corecore